Constructing Mid-Points for Two-Party Asynchronous Protocols

نویسندگان

  • Petar Tsankov
  • Muhammad Torabi Dashti
  • David A. Basin
چکیده

Communication protocols describe the steps that the communication end-points must take in order to achieve a common goal. In practice, networks often contain mid-points, which can relay, redirect, or filter messages exchanged by the end-points. A mid-point can enforce a communication protocol: it forwards the messages that conform to the protocol, and drops them otherwise. Protocol specifications typically define only the end-points’ behavior. Implementing a mid-point that enforces a protocol is nontrivial: the mid-point’s behavior depends on the end-point’s behavior, and also on the behavior of the communication environment in which the protocol executes. We present a process algebraic framework that takes as input the formal specifications of the protocol and the environment and outputs a specification for a mid-point that enforces the protocol. We prove that the mid-point specifications synthesized by our framework are correct: only messages that could have resulted from correctly executing end-points are forwarded. As an application, we construct a formal model for the mid-point that enforces the TCP three-way handshake protocol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constant-Round Asynchronous Multi-Party Computation

Secure multi-party computation (MPC) allows several mutually distrustful parties to securely compute a joint function of their inputs and exists in two main variants: In synchronous MPC parties are connected by a synchronous network with a global clock, and protocols proceed in rounds with strong delivery guarantees, whereas asynchronous MPC protocols can be deployed even in networks that deliv...

متن کامل

Efficient Secure Two - Party Protocols ”

This book provides a rigorous introduction to a smaller example of general secure multiparty computation (SMC), namely the case of two-party protocols. The approach is structured somewhat top-down: the authors first explain notions of security and security definitions for their chosen scenario, namely that of two-party protocols, with a static adversary, in the stand-alone model; then they look...

متن کامل

Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure multi-party computation (MPC) allows several mutually distrustful parties to securely compute a joint function of their inputs and exists in two main variants: In synchronous MPC parties are connected by a synchronous network with a global clock, and protocols proceed in rounds with strong delivery guarantees, whereas asynchronous MPC protocols can be deployed even in networks that deliv...

متن کامل

Breaking the O(nm) Bit Barrier: Secure Multiparty Computation with a Static Adversary

We describe scalable protocols for solving the secure multi-party computation (MPC) problem among a large number of parties. We consider both the synchronous and the asynchronous communication models. In the synchronous setting, our protocol is secure against a static malicious adversary corrupting less than a 1/3 fraction of the parties. In the asynchronous setting, we allow the adversary to c...

متن کامل

Optimistic Asynchronous Multi-party Contract Signing with Reduced Number of Rounds

Optimistic asynchronous multi-party contract signing protocols have received attention in recent years as a compromise between efficient protocols and protocols avoiding a third party as a bottleneck of security. “Optimistic” roughly means: in case all participants are honest and receive the messages from the other participants as expected, the third party is not involved at all. The best solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011